Abstract

A hard sphere+triangle-well potential is employed to test a recently proposed thermodynamic perturbation theory (TPT) based on a coupling parameter expansion. It is found that the second-order term of the coupling parameter expansion surpasses by far that of a high temperature series expansion under a macroscopic compressibility approximation and several varieties. It is also found that the fifth-order version displays best among all of the numerically accessible versions with dissimilar truncation orders. Particularly, the superiority of the fifth-order TPT from other available liquid state theories is exhibited the most incisively when the temperature of interest obviously falls. We investigate the modification of the phase behavior of the hard sphere+triangle-well fluid resulting from a density dependence imposed on the original potential function. It is shown that (1) the density dependence induces polymorphism of fluid phase, particularly liquid-liquid transition in metastable supercooled region, and (2) along with enhanced decaying of the potential function as a function of bulk density, both the liquid-liquid transition and vapor-liquid transition tend to be situated at the domain of lower temperature, somewhat similar to a previously disclosed thumb rule that the fluid phase transition tends to metastable with respect to the fluid-solid transition as the range of the attraction part of a density-independence potential is sufficiently short compared to the range of the repulsion part of the same density-independence potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.