Abstract

Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ``Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ``Amelino-Camelia dispersion relation'' which is E2 = m2+p2[1−η(E/mp)n] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ⩾ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call