Abstract

This work first deals with the effect of Nb addition on the liquid phase separation in the Cu–Co system, which displays a metastable liquid miscibility gap. The isothermal sections at 800, 900, 1000, 1100, and 1200 °C in the Cu–Co–Nb system have been experimentally determined by optical microscopy, electron probe microanalysis, and x-ray diffraction on the equilibrated alloys, and the phase equilibria in the Cu–Co–Nb ternary system were thermodynamically assessed by using CALPHAD (Calculation of Phase Diagrams) method on the basis of the presently determined experimental data. Nb additions can stabilize the metastable liquid phase separation in the Cu–Co binary system and significantly increase its critical temperature. The solidified Cu–Co–Nb alloys appearing on the top-bottom separated microstructural morphology under low cooling rate while forming core-type macrostructural morphology under high cooling rate have been confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.