Abstract

We have built a lattice gas model for cobalt-carbon interaction to investigate the thermodynamics and kinetics of carbon deposition on Co(0001) surfaces. The formation of carbon structures on cobalt is considered to be one of the causes of deactivation of a cobalt Fischer-Tropsch (FT) catalyst. The formation of graphene - the most thermodynamically stable phase under FT conditions - is kinetically inhibited during the first 30 hours of exposure of the surface to carbon, while the build-up of surface carbide is the fastest reaction. Our simulations clearly show that the kinetics of carbon deposition is the result of two competing effects: a fast subsurface diffusion and a slower surface diffusion to form a carbon-carbon bond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.