Abstract

Cadmium sorption behavior of granular activated carbon oxidized with nitric acid was systematically studied by sets of the equilibrium and time-based experiments under various conditions. The cadmium adsorption capacity of oxidized granular activated carbon enlarged with an increase in pH, and reduced with an increase in ionic strength. Experimental data were evaluated to find out kinetic characteristics. Adsorption processes were found to follow pseudo-second order rate equation. Adsorption isotherms correlate well with the Langmuir isotherm model and the maximum sorption capacity of cadmium evaluated is 51.02 μmol/g. Thermodynamic parameters were calculated based on Van't Hoff equation. Equilibrium constant K d was evaluated from Freundlich isotherm model constants, Langmuir isotherm model constants, and isotherms, respectively. The average change of standard adsorption heat Δ H 0 was −25.29 kJ/mol. Negative Δ H 0 and Δ G 0 values indicate the adsorption process for cadmium onto the studied activated carbon is exothermic and spontaneous. The standard entropy Δ S 0 was also negative, which suggests a decrease in the freedom of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.