Abstract

In this study, we investigated the thermodynamics and kinetics of boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag containing a high basic potassium carbonate. The distribution of boron between slag and silicon was theoretically derived and the distribution coefficients (L B) of boron with different compositions of CaO, SiO2, and K2CO3 in slag reagents were determined. The maximal value of L B reached 2.08 with a high basicity slag of 40 pctCaO-40 pctSiO2-20 pctK2CO3 (Λ = 0.73). The boron removal rates from MG-Si using CaO-SiO2 and CaO-SiO2-K2CO3 slags at 1823 K (1550 °C) were investigated in an electromagnetic induction furnace. The results showed that the boron concentration in MG-Si can be reduced from 22 to 1.8 ppmw at 1823 K (1550 °C) with 20 pct K2CO3 addition to calcium silicate slag, where the removal efficiency of boron reached 91.8 pct. The mass transfer coefficient (β S) of boron in binary 50 pctCaO-50 pctSiO2 slag was 3.16 × 10−6 m s−1 at 1823 K (1550 °C) and was 2.43 × 10−5 m s−1 in ternary 40 pctCaO-40 pctSiO2-20 pctK2CO3 slag.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call