Abstract

In the framework of the linear σ-model (LSM) with three quark flavors, the chiral phase diagram at finite temperature and density is investigated. For temperatures higher than the critical temperature (), we added to the LSM the gluonic sector from the quasi-particle model (QPM), which assumes that the interacting gluons in the strongly interacting matter, the quark–gluon plasma (QGP), are phenomenologically the same as non-interacting massive quasi-particles. The dependence of the chiral condensates of strange and non-strange quarks on the temperature and chemical potential is analyzed. Then, we calculate the thermodynamics in the new approach (using a combination of the LSM and the QPM). Confronting the results with those from recent lattice quantum chromodynamics simulations reveals an excellent agreement for almost all thermodynamic quantities. The dependences of the first-order and second-order moments of the particle multiplicity on the chemical potential at fixed temperature are studied. These investigations are implemented through characterizing the large fluctuations accompanying the chiral phase transition. The results for the first-order and second-order moments are compared with those from the (3) Polyakov linear σ-model (PLSM). Also, the resulting phase diagrams deduced in the PLSM and the LSM+QPM are compared with each other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.