Abstract

This paper provides the thermodynamic approach and constitutive theory for closure of the conservation equations for multiphase flow in porous media. The starting point for the analysis is the balance equations of mass, momentum, and energy for two fluid phases, a solid phase, the interfaces between the phases and the common lines where interfaces meet. These equations have been derived at the macroscale, a scale on the order of tens of pore diameters. Additionally, the entropy inequality for the multiphase system at this scale is utilized. The internal energy at the macroscale is postulated to depend thermodynamically on the extensive properties of the system. This energy is then decomposed to provide energy forms for each of the system components. To obtain constitutive information from the entropy inequality, information about the mechanical behavior of the internal geometric structure of the phase distributions must be known. This information is obtained from averaging theorems, thermodynamic analysis, and from linearization of the entropy inequality at near equilibrium conditions. The final forms of the equations developed show that capillary pressure is a function of interphase area per unit volume as well as saturation. The standard equations used to model multiphase flow are found to be very restricted forms of the general equations, and the assumptions that are needed for these equations to hold are identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.