Abstract

Pushing the limit of cutoff potentials allows nickel-rich layered oxides to provide greater energy density and specific capacity whereas reducing thermodynamic and kinetic stability. Herein, a one-step dual-modified method is proposed for in situ synthesizing thermodynamically stable LiF&FeF3 coating on LiNi0.8 Co0.1 Mn0.1 O2 surfaces by capturing lithium impurity on the surface to overcome the challenges suffered. The thermodynamically stabilized LiF&FeF3 coating can effectively suppress the nanoscale structural degradation and the intergranular cracks. Meanwhile, the LiF&FeF3 coating alleviates the outward migration of Oα- (α<2), increases oxygen vacancy formation energies, and accelerates interfacial Li+ diffusion. Benefited from these, the electrochemical performance of LiF&FeF3 modified materials is improved (83.1% capacity retention after 1000 cycles at 1C), even under exertive operational conditions of elevated temperature (91.3% capacity retention after 150 cycles at 1C). This work demonstrates that the dual-modified strategy can simultaneously address the problems of interfacial instability and bulk structural degradation and represents significant progress in developing high-performance lithium-ion batteries (LIBs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.