Abstract
Physics-informed neural network architectures have emerged as a powerful tool for developing flexible PDE solvers that easily assimilate data. When applied to problems in shock physics however, these approaches face challenges related to the collocation-based PDE discretization underpinning them. By instead adopting a least squares space-time control volume scheme, we obtain a scheme which more naturally handles: regularity requirements, imposition of boundary conditions, entropy compatibility, and conservation, substantially reducing requisite hyperparameters in the process. Additionally, connections to classical finite volume methods allows application of inductive biases toward entropy solutions and total variation diminishing properties. For inverse problems in shock hydrodynamics, we propose inductive biases for discovering thermodynamically consistent equations of state that guarantee hyperbolicity. This framework therefore provides a means of discovering continuum shock models from molecular simulations of rarefied gases and metals. The output of the learning process provides a data-driven equation of state which may be incorporated into traditional shock hydrodynamics codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.