Abstract
The complex phenomena underlying mechanical contraction of cardiac cells and their influence in the dynamics of ventricular contraction are extremely important in understanding the overall function of the heart. In this paper we generalize previous contributions on the active strain formulation and propose a new model for the excitation-contraction coupling process. We derive an evolution equation for the active fiber contraction based on configurational forces, which is thermodynamically consistent. Geometrically, we link microscopic and macroscopic deformations giving rise to an orthotropic contraction mechanism that is able to represent physiologically correct thickening of the ventricular wall. A series of numerical tests highlights the importance of considering orthotropic mechanical activation in the heart and illustrates the main features of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.