Abstract

A theory for describing evolution as adaptive walks by a finite population with M walkers ( M≥1) on an anisotropic Mt. Fuji-type fitness landscape is presented, from a thermodynamical point of view. Introducing the ‘free fitness’ as the sum of a fitness term and an entropy term and ‘evolutionary force’ as the gradient of free fitness on a fitness coordinate, we demonstrate that the behavior of these theoretical walkers is almost consistent with the thermodynamical schemes. The major conclusions are as follows: (1) an adaptive walk (=evolution) is driven by an evolutionary force in the direction in which free fitness increases; (2) the expectation of the climbing rate obeys an equation analogous to the Einstein relation in Brownian motion; (3) the standard deviation of the climbing rate is a quantity analogous to the mean thermal energy of a particle, kT(×constant). In addition, on the interpretation that the walkers climb the landscape by absorbing ‘fitness information’ from the surroundings, we succeeded in quantifying the fitness information and formulating a macroscopic scheme from an informational point of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.