Abstract

Abstract Air–sea fluxes are the main drivers of ocean circulation, yet their representation in ocean-only models remains challenging. While a zeroth-order formulation accounting only for the state of the atmosphere is well adopted by the community, surface ocean feedback has gained attention over the last decades. In this paper, we focus on thermodynamical indirect feedback of surface ocean currents, which completes the “eddy killing” effect induced by the mechanical feedback. In this study, we quantify both the mechanical and thermodynamical contributions in the context of idealized, coupled quasigeostrophic simulations through sensitivity experiments on wind stress formulation. As compared to eddy killing which impacts kinetic energy levels, the indirect thermodynamical feedback induces significant changes in potential energy levels. The thermodynamical feedback also enhances by +27% the potential-to-kinetic turbulent energy conversion induced by relative wind stress formulation, as well as significant changes in both forward and inverse cascades of potential energy (PE). That is, accounting for ocean surface currents in the computation of wind stress significantly changes transfers of PE from the mean to the turbulent flow. These changes are mostly controlled by a reduced upscale energy flux rather than a more vigorous downscale flux, a process in line with results obtained for kinetic energy fluxes associated with the eddy killing effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.