Abstract

We investigate the thermodynamical aspects of the Casimir effect in the case of plane parallel plates made of real metals. The thermal corrections to the Casimir force between real metals were recently computed by several authors using different approaches based on the Lifshitz formula with diverse results. Both the Drude and plasma models were used to describe a real metal. We calculate the entropy density of photons between metallic plates as a function of the surface separation and temperature. Some of these approaches are demonstrated to lead to negative values of entropy and to nonzero entropy at zero temperature depending on the parameters of the system. The conclusion is that these approaches are in contradiction with the third law of thermodynamics and must be rejected. It is shown that the plasma dielectric function in combination with the unmodified Lifshitz formula is in perfect agreement with the general principles of thermodynamics. As to the Drude dielectric function, the modification of the zero-frequency term of the Lifshitz formula is outlined that not to violate the laws of thermodynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call