Abstract

AbstractInterfaces between arsenide and phosphide III‐V semiconductors have shown to be one of the most difficult issues to be understood and definitively solved. This problem is particularly relevant with Vapour Phase Epitaxy (VPE) and Metallo‐Organic Vapour Phase Epitaxy (MOVPE) techniques, since an irreproducibility in preparing abrupt interfaces between arsenide and phosphide has been evidenced. Several researchers have ascribed this problem to the volatility of arsenic and phosphorus species and since then for long time different recipes and growth procedures have been suggested in order to obtain sharp transition between the two different materials. In this work the film/substrate interface is modelled using thermodynamical calculations after the regular solution model proposed by Jordan and Ilegems: PH3 flows over GaAs surface, and as a consequence the substrate is enriched with P, with the formation of a thin layer of GaAsP and mixed As‐P gaseous species. Samples of InGaP on GaAs substrate were grown by MOVPE and characterised by Secondary Ion Mass Spectroscopy (SIMS) and Transmission Electron Microscopy (TEM) in order to support the theoretical findings. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.