Abstract

Nanopores in graphene monolayers are a promising option for molecular separation applications, such as desalination and carbon capture. Graphene's atomic thickness allows for an optimal balance between molecular selectivity and permeability, while its chemical stability and robust mechanical properties make it appealing for a wide range of commercial applications. However, scaling to large areas with controlled pore size distribution is an open challenge in ultrathin membranes. Here, using first-principles calculations, we identify a suitable thermodynamic window in a chemical vapor deposition system for directly growing graphene monolayers with a controlled pore size distribution. As an example, our calculations show that a postgrowth annealing step with a supersaturation range of 19.7-25 kJ/mol at 1000 K results in the creation of a controllable pore density at graphene grain boundaries, with pore sizes falling within the range of 5-8 Å. Such pores isolate hydrated Cl ions from water molecules, effectively desalinating seawater. Thus, it allows the design of targeted synthesis of large-scale 2D layers for membrane applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call