Abstract

Alkylating agents that react through highly electrophilic quinone methide intermediates often express a specificity for the weakly nucleophilic exocyclic amines of deoxyguanosine (dG N(2)) and deoxyadenosine (dA N(6)) in DNA. Investigations now indicate that the most nucleophilic site of dA (N1) preferentially, but reversibly, conjugates to a model ortho-quinone methide. Ultimately, the thermodynamically stable dA N(6) isomer accumulates by trapping the quinone methide that is transiently regenerated from collapse of the dA N1 adduct. Alternative conversions of the dA N1 to the dA N(6) derivative by a Dimroth rearrangement or other intramolecular processes are not competitive under neutral conditions, as demonstrated by studies with [6-(15)N]-dA. Both a model quinone methide precursor and its dA N1 adduct yield a similar profile of deoxynucleoside products when treated with an equimolar mixture of dC, dA, dG, and T. Consequently, the most readily observed products of DNA modification resulting from reversible reactions may reflect thermodynamic rather than kinetic selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.