Abstract
A phenomenological thermodynamic model has been developed to account for the effects of the film thickness on various properties of ferroelectric thin films. To this end, we have suitably incorporated a position-dependent stress distribution function into the elastic Gibbs function. Various physical properties can be predicted as a function of the film thickness using this modified thermodynamic formalism. A comparison of the theoretical predictions with experimental values of the average strain and the para-ferro transition temperature indicates that the tensile stress caused by the cubic-tetragonal displacive phase transition dominates over the compressive thermal stress in the epitaxially oriented tetragonal Pb(Zr, Ti)O3 thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Physics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.