Abstract

An exact equation for determining the Tolman length (TL) as a function of radius is obtained within the framework of classical thermodynamics and a computational procedure for solving it is proposed. As a result of implementing this procedure, the dependences of the TL and surface tension on radius are obtained for the drop and bubble cases and various equations of state. As one of the results of the thermodynamic study, a new equation for the dependence of surface tension on radius (curvature effect) alternative to the corresponding Tolman equation and associated with the spinodal point is obtained. The fundamental impossibility to determine the curvature effect analytically from the binodal point, i.e., using the Tolman equation, is established; it is calculated only from the spinodal point and is determined by the characteristics of the system at this point. The sign of the TL asymptotic value debated in the literature in recent decades is uniquely determined in the theory: it is negative for drops and positive for bubbles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call