Abstract

The Joule-Thomson cooler (JTC) is a key component of the hybrid cryocooler dedicated to achieving and maintaining the operating temperature of around 2–4 K extensively used in quantum computing and communications. To clarify the energy conversion mechanism during the throttling process of the JTC and to improve throttling performance at 2–4 K, a numerical model is developed in which the effect of the complex real physical properties of liquid helium is considered, and the modified Lee phase change model is proposed to meet the operating conditions from supercritical to saturation. The results show that the phase change causes the cooling effect during the throttling process. The larger total energy loss in orifice leads to a higher liquefaction ratio. The liquefaction ratio increases with the increasing orifice thickness and the decreasing orifice diameter and inlet pressure. Given a constant inlet and refrigeration temperature difference, the liquefaction ratio increases with the increase of inlet temperatures. The maximum liquefaction ratio of 93.80% is achieved with orifice thickness of 0.8 mm, orifice diameter of 30 μm, and inlet pressure of 0.32 MPa, assuming an inlet temperature of 4 K and a refrigeration temperature of 3.43 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.