Abstract
In this paper, the effect of electric fields on phase equilibria through polarization is investigated. A relation is derived for the chemical potential of a system, where the electric field is localized over a liquid phase mixture in equilibrium with a vapor phase mixture. This relation is then applied to a water-ethanol mixture to explore the effect of polarization-based electric fields on the liquid phase composition. It is observed that the quadratic dependence on electric field strength produces little effect below field strengths of approx. 10 MV/m. However, above this field strength, the mole fraction of water in the liquid phase grows rapidly, increasing by a factor of 8 for a water vapor phase fraction of 0.2 and a field strength of 500 MV/m, which approaches the dielectric breakdown strength of water. Nonetheless, this field strength could be achievable with microfluidic experimental setups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.