Abstract

Waste foundry sand (WFS) from the brass and bronze casting and molding process include various potentially toxic elements (PTEs), such as copper, zinc, tin, and lead. Hence, the utilization of WFS in construction and geotechnical applications evokes environmental concerns due to the rain-induced leaching of PTEs into the groundwater system. The present study investigated the extractive decontamination of WFS using mineral acids, e.g., HCl, H2SO4, or HNO3. Favorable extraction efficiency was achieved with HCl as compared to the other mineral acids, which was further enhanced at high temperatures and increased acid concentrations. The thermodynamic analysis indicated that ≥ 4molL-1 of HCl and ≤ 100°C temperature ensured maximum extraction of PTEs due to the endothermic interactions between the HCl and PTEs. The HCl-treated WFS needed to be rinsed with water to restrict the after treatment elution of PTEs. The hazardous environmental impact of acid-treated WFS was evaluated following the standard leaching test and comparison with legislative recommendations for PTEs, which showed the water-assisted leaching rate of all the PTEs are within the regulatory limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.