Abstract
New bifunctional H(4)dota-like ligands with three acetic acid and one phosphinic acid pendant arms and propionate (H(5)do3ap(PrA)) or 4-aminobenzyl (H(4)do3ap(ABn)) reactive groups bound to the phosphorus atom were investigated. Potentiometric studies showed that the ligands have a similar basicity to the parent H(4)dota and the stability constants of their complexes with sodium(i) and selected lanthanide(III) ions are also similar. Formation and acid-assisted decomplexation kinetics of yttrium(III) complexes with a series of H(4)dota-like ligands (H(4)dota and its phosphinic/phosphonic acid analogues) were studied and the reactions are sensitive to a slight modification of the ligand structure. The (2-carboxyethyl)phosphinic acid derivative H(5)do3ap(PrA) and the phosphonic acid ligand H(5)do3ap form complexes faster than H(4)dota. The most kinetically inert complex is that with H(4)do3ap(ABn). Rates of complexation and decomplexation can depend on the ability to transfer proton(s) outside/inside the complex cavity and, therefore, on the hydrophobicity of the ligands. The results demonstrate that the new bifunctional ligands are suitable for labelling biomolecules with yttrium(iii) radioisotopes for utilization in nuclear medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.