Abstract

With the rising usage of fossil fuels, there is an urgent need to develop new technologies specifically based on renewable energy sources to power the vehicles running on fuel. A fuel cell is an electrochemical cell that is used to convert the chemical energy of a fuel directly to electric power. Fuels cells possess advantages such as smaller size, high efficiency, silent operation, etc. However, there can be significant variations in the size and power output of the fuel cells depending upon the application. The focus of this paper is to estimate the performance of an integrated system comprising of Polymer Exchange Membrane Fuel cell (PEMFC) and vapour adsorption refrigeration system to produce electric output and cooling effect simultaneously. The adsorption system in this study is based on activated carbon and methanol combination. The effect of operating parameters such as the operating temperature, current density and evaporator temperature on the energy and exergy efficiency of the system is presented. The study shows a remarkable improvement in the performance of the integrated system compared to PEMFC alone. The results show that the system energy and exergy efficiency decrease as the current density value increases. Maximum system energy and exergy efficiency of 63.01% and 29.88% are achieved. In addition, a maximum energy efficiency of 65.39% was reported at an evaporator temperature of 5 °C and a current density of 0.8 A/cm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.