Abstract

The complex formation between 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (Kryptofix-5) and Sn2+ ions was studied in pure acetonitrile (AN), dimethylformamide (DMF), 1,4-dioxane (DOX), and methanol (MeOH) and in acetonitrile-1,4-dioxane (AN-DOX), acetonitrile-dichloromethane (AN-DCM), acetonitrile-methanol (AN-MeOH), and acetonitrile-dimethylformamide (AN-DMF) binary mixed solvent solutions at different temperatures using conductometric method. 1: 1 [ML] complex is formed between the metal cation and ligand in most solvent systems but in the cases of AN-MeOH (MeOH = 90 mol %) binary mixture and in pure MeOH a 2: 1 [M2L] complex was observed, that is the stoichiometry of complexes may be changed by the nature of the medium. The stability order of the (Kryptofix-5·Sn)2+ complex in the studied binary mixed solvent solutions at 25°C was found to be AN-DOX > AN-DCM > AN-MeOH > AN-DMF and in the case of pure solvents at 25°C the sequence was the following: AN > DMF > DOX. A non-linear behavior was observed for changes of logK f of (Kryptofix-5·Sn)2+ complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent intractions and also by the preferential solvation of the f species involved in the complexation reaction. The values of standard enthalpy changes (ΔH c ○ ) for complexation reactions were obtained from the slope of the Van’t Hoff plots and the changes in standard entropy (ΔS c ○ ) were calculated from the relationship ΔG c, 298.15 ○ = ΔH c ○ − 298.15ΔS c ○ . The results show that in most cases, the (Kryptofix-5·Sn)2+ complex is both enthalpy and entropy stabilized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call