Abstract

We analyze the generic structure of Einstein tensor projected onto a 2-D spacelike surface S defined by unit timelike and spacelike vectors u_i and n_i respectively, which describe an accelerated observer (see text). Assuming that flow along u_i defines an approximate Killing vector X_i, we then show that near the corresponding Rindler horizon, the flux j_a=G_ab X^b along the ingoing null geodesics k_i normalised to have unit Killing energy, given by j . k, has a natural thermodynamic interpretation. Moreover, change in cross-sectional area of the k_i congruence yields the required change in area of S under virtual displacements \emph{normal} to it. The main aim of this note is to clearly demonstrate how, and why, the content of Einstein equations under such horizon deformations, originally pointed out by Padmanabhan, is essentially different from the result of Jacobson, who employed the so called Clausius relation in an attempt to derive Einstein equations from such a Clausius relation. More specifically, we show how a \emph{very specific geometric term} [reminiscent of Hawking's quasi-local expression for energy of spheres] corresponding to change in \emph{gravitational energy} arises inevitably in the first law: dE_G/d{\lambda} \alpha \int_{H} dA R_(2) (see text) -- the contribution of this purely geometric term would be missed in attempts to obtain area (and hence entropy) change by integrating the Raychaudhuri equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.