Abstract

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are associated with the conformational conversion of the cellular prion protein, PrP(C), into a protease-resistant form, PrP(Sc). Here, we show that mutation-induced thermodynamic stabilization of the folded, α-helical domain of PrP(C) has a dramatic inhibitory effect on the conformational conversion of prion protein invitro, as well as on the propagation of TSE disease invivo. Transgenic mice expressing a human prion protein variant with increased thermodynamic stability were found to be much more resistant to infection with the TSE agent than those expressing wild-type human prion protein, in both the primary passage and three subsequent subpassages. These findings not only provide a line of evidence in support of the protein-only model of TSEs but also yield insight into the molecular nature of the PrP(C)→PrP(Sc) conformational transition, and they suggest an approach to the treatment of prion diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call