Abstract

Precipitation hardening, which relies on a high density of intermetallic precipitates, is a commonly utilized technique for strengthening structural alloys. Structural alloys are commonly strengthened through a high density of small size intermetallic precipitates. At high temperatures, however, the precipitates coarsen to reduce the excess energy of the interface, resulting in a significant reduction in the strengthening provided by the precipitates. In certain ternary alloys, the secondary solute segregates to the interface and results in the formation of a high density of nanosize precipitates that provide enhanced strength and are resistant to coarsening. To understand the chemical effects involved, and to identify such systems, we develop a thermodynamic model using the framework of the regular nanocrystalline solution model. For various global compositions, temperatures and thermodynamic parameters, equilibrium configuration of Mg-Sn-Zn alloy is evaluated by minimizing the Gibbs free energy function with respect to the region-specific (bulk solid-solution, interface and precipitate) concentrations and sizes. The results show that Mg$_2$Sn precipitates can be stabilized to nanoscale sizes through Zn segregation to Mg/Mg$_2$Sn interface, and the precipitates can be stabilized against coarsening at high-temperatures by providing a larger Zn concentration in the system. Together with the inclusion of elastic strain energy effects and the input of computationally informed interface thermodynamic parameters in the future, the model is expected to provide a more realistic prediction of segregation and precipitate stabilization in ternary alloys of structural importance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call