Abstract

The thermodynamic stability of sulfate ions on synthesized calcium aluminosilicate hydrate (C-A-S-H) microstructure with different Ca/Si ratios and Al/Si ratios was investigated by XRD, SEM-EDS, 29Si and 27Al nuclear magnetic resonance (NMR) and thermodynamic modeling. The results indicate that sulfate attack leads to both decalcification and dealumination for C-A-S-H gels, and the amount of corrosion products (gypsum and ettringite) decreased gradually with decreasing Ca/Si ratios of C-A-S-H. Sulfate ions can also promote the polymerization degree of C-A-S-H gels, improving its resistance to sulfate attack. Moreover, the 4-coordination aluminum (Al[4]) in C-A-S-H, 5-coordination aluminum (Al[5]), 6-ccordination aluminum (Al[6]) in TAH (third aluminum hydrate) and Al[6] in monosulfate or C-A-H (calcium aluminate hydrate) can be transformed into Al[6] in ettringite by sulfate attack. Furthermore, through thermodynamic calculation, the decrease of Ca/Si ratios and increase of Al/Si ratios can improve the thermodynamic stability of C-A-S-H gels under sulfate attack, which agrees well with the experiment results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.