Abstract

The phase stability of LaMnO${}_{3}$ with respect to its competing oxides is studied using hybrid-exchange density functional theory (DFT) as implemented in crystal09. The underpinning DFT total-energy calculations are embedded in a thermodynamic framework that takes optimal advantage of error cancellation within DFT. It has been found that by using the ab initio thermodynamic techniques described here, the standard Gibbs formation energies can be calculated to a significantly greater accuracy than was previously reported (a mean error of 1.6% with a maximum individual error of $\ensuremath{-}$3.0%). This is attributed to both the methodology for isolating the chemical potentials of the reference states, as well as the use of the Becke, three-parameter, Lee-Yang-Parr (B3LYP) functional to thoroughly investigate the ground-state energetics of the competing oxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.