Abstract
The influence of magnetic interactions on high temperature thermodynamic stability of Fe-Cr binary system has been analysed in the light of accurate isothermal calorimetry measurements (400-1473 K) on Fe-20wt.%Cr alloy. The onset of two successive principal transformations namely, (i) α(Fe-rich bcc)+α(Cr rich bcc)α(HT bcc) at 702±10 K; and (ii) αferroαpara at 925 ±10 K, with their associated enthalpy effects (ΔoHmag = 2 kJ mol -1; Cpmag = 20 J mol-1 K-1) have been clearly delineated by the measured enthalpy variation with temperature. A precise quantification of magnetic contribution to high temperature thermodynamic stability has been attempted using physically based modelling approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.