Abstract

Chemotherapy is an effective anti-tumor treatment. Some anticancer chemotherapeutic drugs can not only induce cell death, but can also elicit antitumor immune responses. Here, the stability of cisplatin-loaded polymeric micelles (CDDP-PMs), pharmacokinetic drug-drug interactions of CDDP and anti-PD-L1 antibody (aPD-L1) in vivo and the alteration of the tumor microenvironment by combination of CDDP-PMs and aPD-L1 were evaluated. CDDP-PMs were fabricated by coordinated complexation and self-assembly method for tumor targeting. CDDP-PMs with higher mass ratio of copolymer have higher thermodynamic stability. The pharmacokinetic study showed that the CDDP and aPD-L1 were metabolized and cleared by two different pathways, suggesting that there is almost no risk of potential drug interactions between CDDP and aPD-L1 and the combination of aPD-L1 and CDDP- PMs may not alter the tissue distribution of CDDP. In vivo antitumor test showed that the tumor growth inhibition rates of CDDP-PMs combined with medium-dose aPD-L1 and CDDP-PMs combined with high-dose PD-L1 were 89.41% and 93.16%, respectively and therapeutic efficacy can be further increased by increasing the dose of aPD-L1 in co-administration group. This therapeutic system by combining chemotherapy and immunotherapy further increases the link between them and holds great potential to offer better safety and antitumor efficacy profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.