Abstract

In this study, the thermodynamic simulation model and system of the copper side-blown smelting process were established using the chemical equilibrium constant method, based on the process reaction mechanism, multiphase equilibrium principle, and MetCal software platform (MetCal v7.81). Under typical production conditions, the composition of the product and the distribution behavior of impurity elements were simulated. The results indicate that the average relative error between the calculated mass fractions of major elements such as Cu, S, Fe, SiO2, CaO, MgO, and Al2O3 in copper matte and smelting slag, and the actual production values, is 4.25%. Additionally, the average relative error between the calculated distribution ratios of impurity elements such as Pb, Zn, As, Bi, Mo, Au, and Ag in copper matte and smelting slag, and the actual production data, is 6.74%. Therefore, this model and calculation system accurately reflects the actual production situation of the copper side-blown smelting process well and has potential to predict process output accurately while optimizing process parameters, effectively guiding production practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.