Abstract

Thermodynamic sensing mechanisms of Pt/reactive insulator/AlGaN hydrogen sensors were studied. The reactive insulator layer of mixed and was grown directly from the AlGaN layer using a photoelectrochemical oxidation method. The current of the hydrogen sensors exhibited considerable response under forward bias in a hydrogen ambient at the temperature range between 350 K and 550 K. Based on the steady-state analysis, the adsorption enthalpy of for hydrogen adsorbed at the interface and in the reactive insulator layer was obtained. Because the kinetic reaction was an exothermic action, the hydrogen response decreased with an increase of operating temperatures. From the thermodynamic kinetic analysis of transient responses, the activation energy was 3.57 kJ/mol. The Pt/reactive insulator/AlGaN hydrogen sensors exhibited high performance at various temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.