Abstract

Enantiopure Λ-[Ir(dfppy)2(MeCN)2](PF6) and Δ-[Ir(dfppy)2(MeCN)2](PF6) (where dfppy is (4,6-difluoropheny)pyridine) were demonstrated to preferentially react with (S,S)-1,2-bis(arylsulfinyl)ethane and (R,R)-1,2-bis(arylsulfinyl)ethane, respectively, under thermodynamic equilibrium. Sequential treatment of Λ-[Ir(dfppy)2(MeCN)2](PF6) and Δ-[Ir(dfppy)2(MeCN)2](PF6) with C2-symmetric bis-sulfoxides led to diastereoselective formation of the corresponding diastereomers Λ-[Ir(dfppy)2(R,R)-bis-sulfoxide)](PF6) in 90-92% and Δ-[Ir(dfppy)2(S,S)-bis-sulfoxide)](PF6) in 88-90%, respectively. The uncoordinated (R,S)-bis-sulfoxides were afforded in 45% with >97% de values. Enantiopure (S,S)-bis-sulfoxides and (R,R)-bis-sulfoxides were respectively obtained by the release of sulfoxide ligands from the corresponding complexes in the presence of glycine in yields of 20-21% with 97-99% ee values. The enantioreceptors Λ-[Ir(dfppy)2(MeCN)2](PF6) and Δ-[Ir(dfppy)2(MeCN)2](PF6) can be recycled and reused in the next reaction cycle. Moreover, a protocol for asymmetric oxidation of prochiral bis-sulfide into enantiopure C2 symmetric bis-sulfoxide was also developed in a high enantioselectivity. The absolute configurations at the metal centers and sulfur atoms were determined by X-ray crystallography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.