Abstract

We study the finite temperature properties of two-component fermionic atoms trapped in a two-dimensional optical lattice. We apply the self-energy functional approach to the two-dimensional Hubbard model with a harmonic trapping potential, and systematically investigate the thermodynamic properties of this system. We find that entropy and grand potential provide evidence of a crossover between the Mott insulating and metallic phases at certain temperatures. In addition, we find that entropy exhibits a cusp-like anomaly at lower temperatures, suggesting a second or higher order antiferromagnetic transition. We estimate the antiferromagnetic transition temperatures, and clarify how the trapping potential affects this magnetic transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.