Abstract

We have investigated the thermodynamic properties of titanium carbide (TiC) nanowire within the framework of density functional theory and quasi-harmonic approximation via calculating the temperature dependence of a number of thermodynamic quantities including entropy, number of microstates, total and free energies, and specific heat. The level of disorder of the nanowire has been found to be larger than that of the bulk mainly due to expansion in only one direction, which accordingly results in acquiring more spatial degrees of freedom. A linear function of temperature has been also found for the low-temperature specific heat of the nanowire being in a remarkable agreement with the general $$T^{\text{n}}$$ -law for Debye systems. Results firmly establish a direct correlation between the spatial expansion of a TiC compound and its low-temperature specific heat and entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.