Abstract

Proper understanding of glass formation implies the knowledge of the thermodynamics of the undercooled melts. Specifically, high values of the excess specific heat of the liquid are expected for good glass-formers. Extending the work of Gillessen and Herlach [F. Gillessen, D.M. Herlach, J. Non-Cryst. Solids 117–118 (1990) 555–558], we re-propose a calculation of the temperature dependence of entropy difference between amorphous-liquid and crystal states. An amorphous Pd 77.5Cu 6Si 16.5 alloy has been produced by injection casting in a cylindrical copper mould. DSC measurements in the liquid, amorphous and crystalline states were performed with samples sliced from the cylinder to determine the heat of fusion, of crystallization and the difference in specific heat capacity between amorphous-liquid and crystal phases. These thermodynamic quantities are used to calculate the thermodynamic functions of the liquid-glass with reference to the equilibrium crystal mixture. The data are compared to those of other bulk glass-formers in terms of fragility plots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call