Abstract

We present a comprehensive macroscopic thermodynamic study of the quasi-one-dimensional (1D) $s=\frac{1}{2}$ frustrated spin-chain system linarite. Susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements were performed to characterize the magnetic phase diagram. In particular, for magnetic fields along the $b$ axis five different magnetic regions have been detected, some of them exhibiting short-range-order effects. The experimental magnetic entropy and magnetization are compared to a theoretical modeling of these quantities using density matrix renormalization group (DMRG) and transfer matrix renormalization group (TMRG) approaches. Within the framework of a purely 1D isotropic model Hamiltonian, only a qualitative agreement between theory and the experimental data can be achieved. Instead, it is demonstrated that a significant symmetric anisotropic exchange of about 10% is necessary to account for the basic experimental observations, including the three-dimensional (3D) saturation field, and which in turn might stabilize a triatic (three-magnon) multipolar phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call