Abstract

We calculate thermodynamic quantities in symmetric nuclear matter within the self-consistent Green's functions method including three-body forces. The thermodynamic potential is computed directly from a diagrammatic expansion, implemented with the CD-Bonn and Nijmegen nucleon-nucleon potentials and the Urbana three-body forces. We present results for entropy and pressure up to temperatures of 20 MeV and densities of $0.32 {\mathrm{fm}}^{\ensuremath{-}3}$. While the pressure is sensitive to the inclusion of three-body forces, the entropy is not. The unstable spinodal region is identified and the critical temperature associated to the liquid-gas phase transition is determined. When three-body forces are added we find a strong reduction of the critical temperature, obtaining ${T}_{c}\ensuremath{\simeq}12 \mathrm{MeV}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.