Abstract

The elastic and thermodynamic properties of Zirconium carbide (ZrC) are investigated by ab initio plane-wave pseudopotential density function theory method. The obtained lattice constant, elastic constant and bulk modulus B are consistent with the experimental and theoretical data. Through the quasi-harmonic Debye model, the dependences of the normalized volume V/V 0 and the bulk modulus B on pressure P, as well as the specific heat C V on the temperature T are obtained successfully. The relationships of the thermal expansion α with temperature and pressure are also investigated, which indicate the temperature hardly has any effect on the thermal expansion α at high pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.