Abstract
The thermodynamic properties of Ca–Bi alloys were determined by electromotive force (emf) measurements to assess the suitability of Ca–Bi electrodes for electrochemical energy storage applications. Emf was measured at ambient pressure as a function of temperature between 723 K and 1173 K using a Ca(s)|CaF 2(s)|Ca(in Bi) cell for twenty different Ca–Bi alloys spanning the entire range of composition from x Ca = 0 to 1. Reported are the temperature-independent partial molar entropy and enthalpy of calcium for each Ca–Bi alloy. Also given are the measured activities of calcium, the excess partial molar Gibbs energy of bismuth estimated from the Gibbs–Duhem equation, and the integral change in Gibbs energy for each Ca–Bi alloy at 873 K, 973 K, and 1073 K. Calcium activities at 973 K were found to be nearly constant at a value of a Ca = 1 × 10 −8 over the composition range x Ca = 0.32–0.56, yielding an emf of ∼0.77 V. Above x Ca = 0.62 and coincident with Ca 5Bi 3 formation, the calcium activity approached unity. The Ca–Bi system was also characterized by differential scanning calorimetry over the entire range of composition. Based upon these data along with the emf measurements, a revised Ca–Bi binary phase diagram is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Electrochimica Acta
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.