Abstract

Ten different thermodynamic properties of the noble gas argon in the liquid and supercritical regions were obtained from semiclassical Monte Carlo simulations in the isothermal-isobaric ensemble using ab initio potentials for the two-body and nonadditive three-body interactions. Our results for the density and speed of sound agree with the most accurate experimental data for argon almost within the uncertainty of these data, a level of agreement unprecedented for many-particle simulations. This demonstrates the high predictive but yet unexploited power of ab initio potentials in the field of molecular modeling and simulation for thermodynamic properties of fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call