Abstract
A numerical and analytical investigation of thermodynamic properties of a magnetized superconducting quantum cylinder has been carried out. The dependence of the difference in the magnetizations of the superconducting and normal phases on the parameters of the nanotube, temperature, and magnetic field has been analyzed. The jump in the heat capacity of the superconducting and normal states at the critical temperature has been calculated. The fluctuation contribution to the thermodynamic properties of the nanotube at a temperature above the transition point has been studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.