Abstract

An attempt toward the operational formulation of quantum thermodynamics is made by employing the recently proposed operations forming positive operator-valued measures for generating thermodynamic processes. The quantity of heat as well as the von Neumann entropy monotonically increases under the operations. The fixed point analysis shows that repeated applications of these operations to a given system transform from its pure ground state at zero temperature to the completely random state in the high temperature limit with intermediate states being generically out of equilibrium. It is shown that the Clausius inequality can be violated along the processes, in general. A bipartite spin-1/2 system is analyzed as an explicit example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.