Abstract

In this paper, using extended thermodynamics, we build up a nonlinear theory for a dilute nonviscous gas under heat flux. The fundamental fields are the density, the velocity, the internal energy density, and the heat flux. The constitutive theory is builtup without approximations. We single out the nonlinear complete expressions of the Gibbs equation and of the nonequilibrium pressure. In particular, we determine the complete expressions furnished by the theory for the nonequilibrium pressure tensor and thermodynamic pressure, i.e., the derivative of the nonequilibrium internal specific entropy with respect to the specific volume, times the nonequilibrium temperature. In a second-order approximation these expressions are identical with those obtained in Phys. Rev. E 51, 158 (1995), using information theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.