Abstract
In order to study the theoretical cycle characteristic of [mmim]DMP (1-methyl-3-methylimidazolium dimethylphosphate) /methanol absorption refrigeration, the modified UNIFAC group contribution model and the Wilson model are established through correlating the experimental vapor pressure data of [mmim]DMP/methanol at T=280∼370 K and methanol mole fraction x= 0.529∼0.965. Thermodynamic performances of absorption refrigeration utilizing [mmim]DMP/methanol, LiBr/H2O and H2O/NH3 are investigated and compared with each other under the same operating conditions. From the results, some conclusions are obtained as follows: 1) the circulation ratio of the [mmim]DMP /methanol absorption refrigeration is higher than that of the LiBr/H2O absorption refrigeration, but still can be acceptable and tolerable. 2) The COP of the [mmim]DMP/methanol absorption refrigeration is smaller than that of the LiBr/H2O absorption refrigeration, while it is higher than that of the H2O/NH3 absorption refrigeration under most operating conditions. 3) The [mmim]DMP/methanol absorption refrigeration are still available with high COP when the heat source temperature is too high to drive LiBr/H2O absorption refrigeration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.