Abstract

This paper discusses the thermodynamic analysis of a gas turbine power plant located in the equatorial rainforest of southern Nigeria. Steady state monitoring and direct collection of data from the Mk IV Speedtronics system and log books in the control room was performed. The variation of operating conditions (ambient temperature, compressor discharge temperature, turbine inlet temperature, exhaust temperature and fuel mass flow rate) on the performance of gas turbine (thermal efficiency, net power output, heat rate, specific fuel consumption and compressor work) were investigated using various thermodynamic relations and equations. The results show that a degree rise in ambient temperature could be responsible for the following: 1.37% reduction in the net power output, 1.48% increase in power drop, 1.49% reduction in thermal efficiency, 2.16% increase in heat rate, 2.17% increase in specific fuel consumption and 0.3% increase in compressor work. Furthermore the thermal efficiency decreases by 0.006% for 1 kcal/kWh increase in heat rate and the heat transfer in the hot gas part was found to increase by 0.16% for a degree rise in ambient temperature. Also the work reveals that the gas turbine had a huge drop in power due to influence of site parameters in contrast to designed data.

Highlights

  • Gas turbines are designed to be highly effective in producing aligned high thrusts

  • The results show that a degree centigrade rise in ambient temperature could be responsible for the following: 0.83% reduction in power output, 0.17% increase in heat rate and 0.40% decrease in required air flow rate

  • It may be pertinent to state here that though much of the data collected were obtained from the performance records of the MS6001B type gas turbine, the findings can be extended to other types of gas turbines perharps with some little modifications

Read more

Summary

Introduction

Gas turbines are designed to be highly effective in producing aligned high thrusts. In a gas turbine, atmospheric airHow to cite this paper: Lebele-Alawa, B.T. and Jo-Appah, V. (2015) Thermodynamic Performance Analysis of a Gas Turbine in an Equatorial Rain Forest Environment. Gas turbines are designed to be highly effective in producing aligned high thrusts. How to cite this paper: Lebele-Alawa, B.T. and Jo-Appah, V. (2015) Thermodynamic Performance Analysis of a Gas Turbine in an Equatorial Rain Forest Environment. Journal of Power and Energy Engineering, 3, 11-23. Jo-Appah is drawn in through an intake duct into the compressor and delivered at a higher pressure to the combustor. This is accomplished by the gas turbine compressor consisting of a cascade of several stages of blades located in radial form on a single axle [1]-[3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.