Abstract

The use of natural cellulosic fibers as materials in the reinforcements of polymer composites and sorption of oil from water, has directed more focus on acetylation than other known chemical modification methods. Cellulose can be modified by acetylation to provide a suitable and cost effective cellulose acetate which have high hydrophobic characteristics and are biodegradable. In this study, lignocellulosic samples—oil palm empty fruit bunch (OPEFB), pride of Barbados pods (POBP) and cocoa pods (CP)—with different compositions of lignin and hemicellulose, were acetylated using solvent free method. Effect of temperature on the acetylation of these samples at different reaction times were studied and used for the thermodynamic studies. Analysis of variance (ANOVA) was used to test the significance of temperature variation with weight percent gain (WPG) due to acetylation of the lignocellulosics at different reaction times. FTIR studies showed evidence of successful acetylation reaction. ANOVA test showed no statistical difference in the observed variation of WPG due to acetylation of all the lignocellulosic samples, with temperature at different reaction times. The best acetylating period for OPEFB, POBP and CP were 60, 30 and 90 min respectively. Acetylation of the lignocellulosic samples were found to occur by absorbing heat from the environment. Values of entropy changes were positive while Gibb’s free energy change values were negative except at operating temperature of 303 K. Thus, acetylation of these lignocellulosic samples were spontaneous except at 303 K. Acetylated POBP has the lowest heat capacity (0.82 kJ mol−1 K−1) compared to acetylated OPEFB (1.47 kJ mol−1 K−1) and CP (1.15 kJ mol−1 K−1). Low critical WPG showed that the mechanism of acetylating these materials were diffusion controlled. The critical temperatures of OPEFB, POBP and CP acetylation were found to be 282.6 K, 223.2 K and 260.5 K respectively. Thus, acetylation of these lignocellulosic samples were successful and found to be energy efficient.

Highlights

  • Lignocellulose are natural fibers which contains lignins and hemicellulose that has to be removed in order to obtain pure cellulose

  • Due to the reported difference in the reactivity of hydroxyl functional groups of lignin, hemicellulose and cellulose, it is important to study the mechanism of acetylating the lignocellulosic materials because it is expected that the amount of lignin and hemicellulose will affect the process as well

  • This study investigates the thermodynamic nature of acetylating lignocellulosic samples from common agricultural residues so as to determine the mechanism and conditions for spontaneity of the process

Read more

Summary

Introduction

Lignocellulose are natural fibers which contains lignins and hemicellulose that has to be removed in order to obtain pure cellulose. Lignocellulose has a lot useful purposes such as being source of fossil fuels, biofuels, fossil based packaging material, biofuel gelling agent, paper production, reinforcement in polymers, sorbents for removal of pollutants from aqueous medium etc. Agricultural wastes such as oil palm empty fruit bunch (Elaeis guineensis), pride of Barbados (Delonix regia), and cocoa (Theobroma cacao) pods are very abundant in different parts of Nigeria. Due to the reported difference in the reactivity of hydroxyl functional groups of lignin, hemicellulose and cellulose, it is important to study the mechanism of acetylating the lignocellulosic materials because it is expected that the amount of lignin and hemicellulose will affect the process as well. This research will aid in determining the minimum temperature required for acetylation and the most suitable acetylating period for each of the agricultural residues

Materials and methods
Results and discussions
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.