Abstract

Thermodynamic modeling of the Mn–P and Fe–Mn–P systems in the full composition was carried out using the CALculation of PHAse Diagrams (CALPHAD) method based on the critical evaluation of all available phase equilibria and thermodynamic data. The liquid and solid solutions were described using the Modified Quasichemical Model and Compound Energy Formalism, respectively. The Gibbs energies of the binary stoichiometric iron and manganese phosphides were determined based on reliable experimental data. The ternary (Fe,Mn)3P, (Fe,Mn)2P and (Fe,Mn)P phosphides were modeled as solid solutions with mutual substitution between Fe and Mn atoms. The Gibbs energy of the liquid solution was predicted using the Toop interpolation technique with P as an asymmetric component, without any ternary parameters. The thermodynamic properties of P in the entire composition region and the liquidus of the ternary system were well reproduced. Based on the thermodynamic models with optimized parameters, unexplored phase diagrams and thermodynamic properties of the Fe–Mn–P system were predicted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call